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We use a theoretical approach to examine the effect of a radial
fluid flow or electric current on the growth and homeostasis of
a cell spheroid. Such conditions may be generated by a drain of
micrometric diameter. To perform this analysis, we describe the
tissue as a continuum. We include active mechanical, electric, and
hydraulic components in the tissue material properties. We con-
sider a spherical geometry and study the effect of the drain on the
dynamics of the cell aggregate. We show that a steady fluid flow
or electric current imposed by the drain could be able to signifi-
cantly change the spheroid long-time state. In particular, our work
suggests that a growing spheroid can systematically be driven
to a shrinking state if an appropriate external field is applied.
Order-of-magnitude estimates suggest that such fields are of
the order of the indigenous ones. Similarities and differences
with the case of tumors and embryo development are briefly
discussed.

tissue biophysics | electrohydraulics | continuum theory of tissues |
multicellular spheroids | tissue growth

Understanding how cells collectively organize to form com-
plex structures and organs is the fundamental question

raised in morphogenesis. This self-organization stems from the
interplay of biochemical (1, 2) and mechanical (2–4), but also
hydraulic (5, 6) and electrical, processes (7, 8). A long-standing
paradigm in developmental biology is that cell chemical signals,
in the form of morphogens, control cell growth and differentia-
tion leading to tissue patterning (1). Although this biochemical
signaling is of paramount importance in developmental control,
it is now well established that mechanical forces between cells or
mediated by the extracellular matrix can also provide regulatory
cues that are equally important (3).

The crucial importance of hydraulics in morphogenesis, which
should not come as a surprise given the large water content
in tissues, has also been highlighted in multiple experiments.
Hydraulic oscillations have for instance been shown to provide a
robust mechanism for size control of the mouse embryo (9) and
during the Hydra regeneration (10). The role of electrical signals
in tissue patterning, although already studied by Roux (11) at the
end of the 19th century, has gained a new interest only recently
(7, 12, 13). In addition to its key function in receiving and relaying
sensory information in the nervous system (14), bioelectricity has
been shown to have a dramatic importance in large-scale pattern-
ing: An alteration of the electrical signaling in Planaria regener-
ation causes for instance the emergence of animals with multiple
heads (7). Similarly, it has recently been observed that an exter-
nal electric field can be used to reverse the morphogenetic fate
of Hydra (15).

In the quest to understand how these different mecha-
nisms come together to shape tissues and organs, simple
cell aggregates such as spheroids have offered an appeal-
ing territory to observe tissue development and to formulate
hypotheses on the underlying mechanisms. Remarkably, a rich
behavior is observed even in single-cell type spheroids, as
in for instance their ability to pump fluid and form liquid-
filled lumens (16, 17). More recently, organoids have received
increasing attention as they can recapitulate complex mor-

phogenetic processes in a relatively simple and controllable
environment (18, 19).

To unravel the connections between biochemical signals and
tissue mechanics, mechanical perturbations of organoids and
cell spheroids can be performed. For instance, atomic force
microscopy has been used to probe the mechanical properties of
mammary organoids (20) and revealed the importance of both
extracellular matrix stiffness and laminin signaling to maintain
tissue integrity. Perturbation of the osmotic pressure around cell
spheroids using large molecules of dextran has also highlighted
the importance of isotropic stress in tissue growth (21, 22).

A broad understanding of tissue mechanics therefore requires
us to consider tissue electrohydraulic properties and to be able
to perturb tissues by electric or hydraulic means. In this theo-
retical work, we study the response of a cell spheroid to electric
and hydraulic perturbations. We propose an experimental setup
where a pipette or drain is used to impose a fluid flow or an exter-
nal electric current through a micrometric drain. Our work shows
that one could control the size of a cellular assembly using such
a setup.

Our theoretical approach relies on generic features of the
physics of the electro-hydrodynamic phenomena at play within
tissues. We adopt a coarse-grained approach of tissues, which
describes many cells and their microenvironments as a contin-
uum with active material properties (23–25). Cell mechanical
characteristics, fluid pumping, ion transport, and electrical prop-
erties are thus considered in a unified framework (26, 27) that we
use to analyze spheroid response to an external perturbation.

In particular, we highlight in the following that steady exter-
nal flow or electric current imposed by a drain can systematically
drive a proliferating spheroid to degeneracy. Such a technique
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could be relevant in a medical context where it could be used to
suppress cancerous tumors.

Methods for suppressing malignant tumors are numerous: A
first path to control tumor size is to use drugs to disturb the
chemical regulation of cancerous cells to prevent them from pro-
liferating (chemotherapy). Immunotherapy has offered a strong
alternative in mitigating cancer by stimulating the immune sys-
tem to suppress tumors (28). In addition, radiotherapy—which
allows the suppression of the tumor by damaging the genetic
material of cancerous cells through radiations—has also proved
effective for tumor removal (29).

Physics-based methods can also be used to provide new
techniques for directly suppressing the cancerous tissues. High-
intensity focused ultrasounds can for instance be used to locally
overheat the cancerous cells (30). Recent experiments also sug-
gest that lower-intensity ultrasound waves could be used to
strain and suppress mechanically cancerous tissues (31, 32), and
low-frequency ultrasounds could be used to increase selectivity
(32). Electrical perturbations have also been used: Cancerous
tissues can for instance be successfully suppressed using irre-
versible electroporation (33) by applying large voltage pulses in
the tissue. More recently, microelectrodes have been used in
electrolytic ablation methods to locally change pH and kill a
cancerous mass (34).

Compared to other treatments and ablation techniques (35),
direct electrohydraulic perturbations of cancerous tissues have,
however, remained largely unexplored. With the theoretical
study that we present here, we aim at highlighting potential
methods for controlling the size of cell spheroids that could also
be used to suppress cancerous tumors.

Continuum Model of a Spheroid with a Drain
Following refs. 26 and 27, we consider the tissue at a coarse-
grained level, such that individual cells are not described but the
tissue as a whole is studied as a continuum material with active
electrical, hydraulic, and mechanical properties. To capture the
hydraulic properties of the tissue, we also adopt a two-fluid
description, where the cells, which form the first fluid, are perme-
ated by the interstitial fluid (36). In the long-time limit (several
days or weeks) that we consider here, cells are able to reorganize
and to relax the internal stresses within the tissue, such that an
effective description of the tissue as a viscous active fluid at long
times is used (25).

To analyze specifically the effect of a drain on a cell spheroid,
we consider a spherical tissue of radius R2 enclosing a spherical
lumen of radius R1 (Fig. 1). A drain of inner radius Rd is inserted

inside the spheroid and can be used to impose an external
flow or an external current. We consider, despite the presence
of the drain, a system with spherical symmetry. The descrip-
tion we propose in the following is therefore effectively one
dimensional and depends only on the distance r to the spheroid
center.

Directional ion pumping through the spheroid is achieved
if cells have a polarity. We thus define a cell polarity field p
with unit norm that we assume, for simplicity, to be oriented
along the radial direction: p = er . Cells also display a nematic
ordering—due for instance to an anisotropy in their shape—that
we describe with the nematic tensor qαβ (Greek indexes indi-
cate Cartesian coordinates). We assume in the following that the
nematic ordering is defined by the same preferred axis as the
polarity of the cells: qαβ = pαpβ − (1/3)δαβ . This situation is for
instance observed in colon carcinoma cell spheroids (37). Finally,
the consideration of ion pumping within the tissue requires the
introduction of an electric field E and an electric current den-
sity j, which obey a generalized Ohm law as we discuss in the
following section.

Tissue Mechanical, Hydraulic, and Electrical Properties. The total tis-
sue stress is decomposed as σαβ =σc

αβ +σf
αβ , where here and in

the following the superscripts c, f stand for the cells and intersti-
tial fluid contributions, respectively. Neglecting inertia and in the
absence of external bulk forces, force balance within the tissue
reads

∂βσ
c
αβ + fα = 0, [1a]

∂βσ
f
αβ − fα = 0, [1b]

where fα represents internal forces between the cells and the
interstitial fluid, and where summation over repeated indexes is
implied.

To obtain the dynamics of the spheroid, that is, the time evo-
lution of the inner and outer radii R1 and R2, we now need to
specify the material properties (or constitutive equations) of the
tissue. In our coarse-grained description, the interstitial fluid is
driven by pressure gradients, while fluid viscosity contributes to
the internal forces fα between fluid and cells. We therefore write
the fluid stress as σf

αβ =−P fδαβ . For the cell stress, the descrip-
tion of the material properties is made easier by decomposing
the stress into a traceless symmetric part σ̃c

αβ and an isotropic
part σcδαβ . The constitutive equation for the isotropic part then
reads (26, 27)

A B

Fig. 1. Sketch of a spheroid with drain. The drain is used to impose an electric current Iext or a volumetric flow rate Qext, driving a fluid flow or current
density throughout the cell spheroid. (A) Flows from inside of the spheroid to outside correspond to Qext, Iext > 0. (B) Flows from outside to inside correspond
to Qext, Iext < 0. The pressures inside the lumen, outside the spheroid, and at the outer end of the drain are denoted Pext

1 , Pext
2 , and Pd, respectively, and

correspondingly for the electric potential: Uext
1 , Uext

2 , and Ud.
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σc +Pc
h = η̄vc

γγ − ν0σ̃
c
αβqαβ − ν1pαEα− ν2pαVα, [2a]

where −σc is the local pressure and we have introduced the
cell strain-rate tensor vc

αβ = (∂αv
c
β + ∂βv

c
α)/2 and where we have

defined Vα = vc
α− v f

α. The bulk viscosity η̄ is a familiar term
that is also present for a passive fluid, except that its micro-
scopic origin is different for a tissue. The homeostatic pressure
Pc

h is a property specific for tissues that results from a balance
of cell growth and cell death (38). In addition to these terms,
we have included additional terms in the isotropic stress: Cell
anisotropies can couple to the anisotropic stress, resulting in the
term proportional to ν0. The terms proportional to ν1 and ν2

represent bioelectric and biohydraulic stresses induced by a cou-
pling to the electric field or by a (relative) fluid flow, respectively.
A similar expansion for the traceless anisotropic part of the stress
tensor reads

σ̃c
αβ = 2ηṽc

αβ + ζqαβ − ν3[Eαpβ ]st− ν4[Vαpβ ]st, [2b]

where ṽc
αβ is the traceless part of the cell strain-rate tensor,

and we have moreover defined the symmetric traceless part
of a dyadic product of vectors: [AαBβ ]st≡AαBβ +AβBα−
(2/3)AγBγδαβ . The coefficient η is the usual shear viscosity
while the other terms represent active couplings, and the terms
proportional to ν3 and ν4 are the anisotropic counterpart of the
terms proportional to ν1 and ν2 in Eq. 2a. The active stress ζqαβ
is a hallmark of active systems and shows the ability of cells to
generate anisotropic stresses due to cell division or contraction
of their cytoskeleton (39, 40). This active stress can be regulated
by the cells and we therefore consider that it depends on the local
pressure at linear order as

ζ = ζ0− ζ1(σc +Pc
h). [2c]

We emphasize that the cell stress constitutive equations (Eqs.
2a–2c) reflect the effective viscous properties of tissues at long
time as a consequence of cellular growth and death. We review
the derivation of these constitutive equations in SI Appendix. A
key feature of our work is that flows and electric fields do influ-
ence cell division and death and therefore growth and shrinkage
of the spheroid (26, 27, 41).

The constitutive equation for the internal force density
between cells and interstitial fluid including all of the linear terms
allowed by symmetry can be written as∗

fα=−κ(vc
α−v f

α) +λ1pα+λ2Eα+λ3∂βqαβ . [3]

The first term −κ(vc
α−v f

α) accounts for the friction between the
interstitial fluid and the cells and leads to Darcy’s law (42) in the
description of porous materials. The permeation coefficient can
be estimated as κ' ηf/a2, where ηf is the interstitial fluid viscos-
ity and a a typical interstitial distance. The term λ1pα accounts
for active fluid pumping by the cells, while the terms proportional
to λ2 correspond to the electroosmotic contribution. The last
term, proportional to λ3, characterizes a differential pumping
term due to the bending of the cells (43).

To complete the tissue properties description, one finally
needs to specify the constitutive equation for the electric current
density∗

jα=−κ̄(vc
α−v f

α) + Λ1pα+ Λ2Eα+ Λ3∂βqαβ , [4]

where Λ2 is the electric conductivity of the tissue. The term
proportional to κ̄ characterizes the current due to the (rela-

*Note that additional terms must be added to Eqs. 3 and 4 for a system lacking spherical
symmetry or for a system where the polarity is not purely radial with unit norm; see
Appendix A for details.

tive) flow of ions between cells as a consequence of a reverse
electroosmotic effect (44). The coefficient Λ1 characterizes the
contribution of ion pumping to the electric current, while the
coefficient Λ3 is an active flexoelectric coefficient. It indicates
that a spatially nonuniform cell polarity orientation is obtained
in response to an electric field and has been shown to play
a crucial role in the nucleation of a lumen in spherical cell
aggregates (27).

Drain Description. The drain can be used to impose an external
fluid flow or an external electric current in two equivalent ways:
either by imposing directly a volumetric flow rate Qext and elec-
tric current I ext through the drain or, alternatively, by applying a
pressure difference ∆P =Pd−Pext

2 (with Pext
2 the pressure at

the outer spheroid boundary and Pd the pressure at the outer
end of the drain; Fig. 1) and an electric potential difference
∆U =U d−U ext

2 (with U ext
2 the electric potential at the outer

spheroid boundary and U d the electric potential at the outer end
of the drain).

In both cases, the imposed external fluid flow and external
electric current density at the lumen boundary read

Qext = 4πR2
1v

ext
1 , and I ext = 4πR2

1j
ext
1 , [5]

where vext
1 and j ext

1 are the fluid velocity and electric current
density at the boundary between the spheroid and the lumen.

In the following, we focus on the case where Qext and I ext are
imposed externally. The case of a pressure difference or elec-
tric potential difference imposed by the drain is discussed in
Appendix C.

Continuity Equations and Boundary Conditions. If cell density and
interstitial fluid density are equal and constant, which we assume
in the following, then the total volume flux vα =φvc

α + (1−φ)v f
α

is divergence-free: ∂αvα = 0 (see SI Appendix for details). In the
presence of the drain, which imposes a nonvanishing fluid veloc-
ity at the inner boundary of the spheroid, the integration of the
total flow incompressibility in spherical coordinates yields a rela-
tion between the fluid velocity v f

r and cell velocity vc
r in the tissue,

which reads

v f
r =

vext
1

1−φ

(
R1

r

)2

− φ

1−φv
c
r . [6]

Similarly, charge conservation in the quasistatic limit ∂αjα = 0
can be integrated in the case where an external current den-
sity j ext

1 is imposed on the inner boundary, yielding the current
density jr = j ext

1 (R1/r)2 throughout the tissue.
The spheroid is surrounded by an external fluid both inside (in

the lumen) and outside. This fluid exerts a hydrostatic pressure
on the tissue that is balanced by the tissue surface tension and by
the total normal stress at the boundaries:

−σc
rr (R1) +P f(R1) =Pext

1 − 2γ1/R1, [7a]

−σc
rr (R2) +P f(R2) =Pext

2 + 2γ2/R2, [7b]

where we have introduced the inner and outer tissue surface ten-
sions γ1 and γ2. Fluid exchange between the spheroid and the
outside is driven by osmotic conditions:

vext
1 −dR1/dt =+K1

[
(Pext

1 −P f(R1))−Πext
1

]
+ Jp,1, [8a]

vext
2 −dR2/dt =−K2

[
(Pext

2 −P f(R2))−Πext
2

]
− Jp,2. [8b]

Here, K1,2 are the permeabilities of the interfaces to water
flow. The fluxes Jp,1 and Jp,2 can be nonzero as a result of
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active pumps and transporters that maintain an osmotic pres-
sure difference and act effectively as water pumps. We have also
introduced vext

2 , the external flow imposed at outer spheroid
boundary. Conservation of the volumetric flow directly yields
vext

2 = vext
1 (R1/R2)2.

The normal velocity of the cells at the boundaries has to match
the growth of the spheroid radii. An increased cell proliferation
in a thin surface layer has been observed in growing spheroids
(21, 22, 45). We thus allow for a thin surface layer of cells, both
facing outside and to the lumen, to have a growth rate that differs
from the bulk. The cell velocity boundary conditions then read

vc
r (R1) = dR1/dt + v1, [9a]

vc
r (R2) = dR2/dt − v2, [9b]

where vi = δkin
c
i h/n

c with h the thickness of the boundary lay-
ers, and nc

i and δki are the cell number density and the cell
growth rate in the surface layers, respectively.

Dynamics of the Spheroid Growth and Orders of Magnitude
We have introduced in the previous section a model for a spher-
ical spheroid with a drain. Solving the force balance Eq. 1
together with the boundary conditions Eqs. 7–9 then allows us
to obtain the dynamics of the inner R1(t) and outer R2(t) radii
of the spheroid in the quasistatic limit. We obtain two coupled
nonlinear differential equations for the spheroid radii, Eqs. 23a
and 23b (Appendix B), which have been studied in ref. 27 in the
absence of a drain. As we will see in the following, imposing an
external fluid flow or electric current has dramatic consequences
for the spheroid growth and can be used to control its size.

Before discussing how the presence of external fields modifies
the dynamics of a spheroid and which protocols can be used to
control its growth, we first use our model to discuss the orders of
magnitude of the external flux and electric current for which we
expect a significant change in the spheroid dynamics. To obtain
these estimates, we assume that the lumen size is small and use
R1 = 0 in Eq. 23b that describes the dynamics of the spheroid.
We then compare in this equation the stresses generated by
imposed flows or electric currents to the stresses stemming from
internal activity in the absence of flows and currents. We find that
the external volumetric flow required to significantly perturb the
spheroid is of the order

Qext'σtyp 4π(1−φ)

κeff
R2, [10]

where κeff =κ− κ̄λ2/Λ2 is an effective permeation coefficient
and σtyp is a typical scale of tissue stress in the absence
of flows and currents. Note that the appearance of κeff in
Eq. 10 indicates that the finite bulk permeability of the
spheroid governs the effects of the external flow imposed via
the drain. Note, however, that for smaller spheroids of size
R2 . (1−φ)/κeffK2' 10− 50 µm, the flow-induced effects are
not dominated by bulk permeation but rather by surface per-
meation and we have Qext' 4πK2σ

typR2
2 . We can estimate the

external electric current required to perturb the spheroid:

I ext' 4πσtypΛ2R2/λ2. [11]

One can use experimental values and order-of-magnitude esti-
mates of the parameters that appear in Eqs. 10 and 11 (Table
1). We estimate that a volumetric flow Qext' 103− 105 µm3/s
is sufficient to observe a significant change in the dynamics of
a millimeter-sized spheroid, and this volumetric flow scales lin-
early with the size of the spheroid. Similarly, electric current
of the order I ext' 1− 100 nA can perturb the dynamics of a
millimeter-sized spheroid (see Fig. 6 in Appendix E).

Table 1. Experimental values and references (left columns) and
estimated values (right columns) of the phenomenological
parameters of the model appearing in the constitutive equations

Parameters Experimental values Parameters Estimations (26, 27)

η (51) 104 Pa·s κ̄ 103 A·s/m3

η̄ (21) 109 Pa·s λ1 −108 N/m3

γ1,2 (51) 10−3 N/m λ2 −106 N·m−2·V−1

κ−1 (52) 10−13 m2·Pa−1·s−1 λ3 −103 N/m2

Πext
1,2 (53) 103 Pa Λ1 1 A/m2

v1,2 (45) 10−10 m/s Λ2 10−2 A·V−1·m−1

Pc
h (21) −103 Pa Λ3 10−5 A/m
ζ0 (45) 103 Pa ν1 101 N·m−1·V−1

ζ1 (45) −10−1 ν2 108 Pa·s/m
Rd 5 10−6 m ν3 1 N·m−1·V−1

ν4 107 Pa·s/m
K1,2 10−10 m·Pa−1·s−1

Jp,1,2 10−11 m/s
1−φ 10−1

ν0 1

Externally imposed flows and electric currents could therefore
be used to induce a change in the spheroid behavior. In the fol-
lowing sections, we focus in more detail on how these external
perturbations can be used to control the size of the spheroid.

Hydraulic and Electric Control of the Size of a Spheroid
Examples of Protocols for Spheroid Suppression. Using our model
and solving numerically Eqs. 23a and 23b (Appendix D), we can
analyze various protocols for the suppression of a spheroid. The
dynamics of the spheroid and its lumen, R2(t) and R1(t), are
therefore studied for different external flow protocols Qext(t)
and electric current protocols I ext(t). To keep the discussion
as general as possible, we introduce dimensionless quantities: a
dimensionless radius r2(t̂) =R2(t)/R0, time t̂ = t/τ0, external
volumetric flow Q̂ =Qext/Q0, and electric current Î = I ext/I0,
where we have defined

R0 =K2η̄ , τ0 = η̄/|Peff
2 | ,

Q0 = 4πη̄2K 3
2 |Peff

2 | , I0 = 4πΛ2η̄K2|Peff
2 |/|λ2|.

[12]

Note that the effective pressure Peff
2 introduced above is a mod-

ification of the homeostatic pressure Pc
h by the external osmotic

pressure and by electric and active contributions. Its expression
can be found in Table 2 and in Appendix B.

We display in Fig. 2 different protocols that can be applied to
a growing spheroid to suppress it. If the external flow magnitude
is sufficiently large and if it is applied long enough, the interven-
tions are successful and lead to the spheroid suppression. Fig. 2B
shows an example of a successful suppression of the spheroid as
a sufficiently strong flow has been applied until the spheroid is
suppressed. A larger flow magnitude leads to a faster spheroid
suppression (Fig. 2C). We also show in Fig. 2D an example of a
successful suppression protocol for which the magnitude of the
flow is lowered as the spheroid size decreases.

Conversely, if the magnitude of the imposed external flow is
not sufficient, or if the duration of the flow is too short, the
protocol can be unsuccessful in suppressing the spheroid. The
spheroid may only have a slower growth rate (Fig. 2E) or shrink
significantly but resume growing as soon as the external flow is
turned off (Fig. 2F). Note that for any spheroid size, there exists
a critical flow magnitude |Qc | such that imposing a steady flow at
magnitude |Qext|> |Qc | will eventually lead to the spheroid sup-
pression, while |Qext|< |Qc | will be unsuccessful. Fig. 2B shows
a protocol with |Qext| ' |Qc |.
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Fig. 2. Spheroid size R2 (red curve) and lumen size R1 (blue curve) normalized to a characteristic size R0 as a function of the normalized time t̂ = t/τ0 for
different external flow protocols Q̂(̂t) = Qext(t)/Q0 (dashed black curve; its magnitude is not at scale). The definitions of τ0, R0, and Q0 are given in Eq. 12.
(A) Spheroid growth without external intervention. (B–D) Successful protocols: The spheroid is suppressed. (E and F) Unsuccessful protocols: The spheroid
continues to grow. These plots are obtained by solving the dynamics equations Eqs. 23a and 23b with the parameter values given in Table 3.

In the examples above we have focused on the case where an
external volumetric flow is imposed. The same analysis and simi-
lar procedures can be used in the case where an external current
I ext(t) is imposed (Fig. 3). We show in Fig. 3B a protocol that
leads to the suppression of the spheroid. Note that an increased
shrinking is obtained if one applies simultaneously an electric
current and an external flow, as both effects are additive. Such
intervention is displayed in Fig. 3C where we observe a faster
shrinking due to external flow in addition to the application of
an electric current.

Importantly, we emphasize that the protocols we are dis-
cussing here are slow and take place on long time scales: Using
parameter values displayed in Table 3, the examples shown in
Figs. 2 and 3 correspond to R0' 1 cm and τ0' 10 days. This
shows that the suppression of the spheroid requires a slow and
steady flow or the application of a small electric current for
several weeks.

Spheroid Dynamics with External Flows and Currents. We now dis-
cuss quantitatively how a drain can be used to control the size

of a spheroid. To keep the discussion as simple as possible, we
consider here the limit of a spheroid enclosing a small lumen
(or lumenless). In the limit of a small lumen compared to
spheroid size R1�R2, the differential equation that describes
the dynamics of the spheroid shrinks to (Appendix B)

dr2

dt̂
=

w0 + (v̂2 +w1/2)r2− δ2 r2
2 + λ̂ r3

2 /4

r2(3 + r2)
, [13]

where we use the dimensionless radius r2 and time t̂ intro-
duced in the previous section. The dimensionless parameters
w0,1 describe the effects of an externally imposed flow or electric
current. If they are set to zero, Eq. 13 reduces to the dynamics of
a lumenless spheroid without drain as studied in ref. 27. They are
defined as wn = jn Î + unQ̂ with n = 0, 1 and where Q̂ and Î are
the dimensionless volumetric flow and electric current, respec-
tively, as defined above. The effects of an imposed external flow
are captured by the coefficients

A B C

Fig. 3. Dimensionless spheroid size R2/R0 (red curve) and lumen size R1/R0 (blue curve) as a function of dimensionless time t̂ = t/τ0 in the presence of an
imposed electric current Î(̂t) = Iext(t)/I0 and imposed flow Q̂(̂t) = Qext(t)/Q0 (dashed brown and black curves; their magnitude is not at scale). The definitions
of τ0, R0, Q0, and I0 are given in Eq. 12. (A) Spheroid growth without external intervention. (B) Successful protocol with external electric field. (C) Successful
protocol with external electric field and flow. Parameter values used for these plots can be found in Table 3.
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u1=
κeff η̄K 2

2

1−φ , u0=1−βu. [14]

Here, u1 describes a permeation effect due to the finite per-
meability of the spheroid to fluid flows and involves the ratio
of the surface permeability K2 and of the (effective) bulk per-
meability ∝ 1/κeff . The parameter u0 includes direct effects of
the external flow—proportional to Qext/K2 in the dimensional
equation corresponding to u0 = 1—which reflects the spheroid
volume change imposed by the external flow due to tissue
incompressibility (Appendix B). We have furthermore defined

βu =
K2

1−φ

(
3ν2− 4ν0ν4 +

κ̄

Λ2
(3ν1− 4ν0ν3)

)
, [15]

which represents the bioelectric and biohydraulic contribution.
Indeed, this term is a sum of terms proportional to the param-
eters νi and thus stems from the coupling between the electric
field (or the interstitial fluid flow) and the cell polarity that
appears in the cell stress.

Imposing an external electric current I ext also contributes to
the spheroid growth control via the parameters

j1 = 1 , j0 =βj. [16]

The coefficient j1 = 1 corresponds to electroosmotic flow due to
the imposed current. The coefficient j0 accounts for bioelectric
and biohydraulic contributions, where

βj =
3ν1− 4ν0ν3

λ2η̄K2
. [17]

Note that since the coefficients βu,j are a sum of phenomeno-
logical parameters for which we have only order of magnitude
estimates, it is difficult to obtain a reliable estimate of their
magnitude and even of their sign. However, estimating upper
bounds for βu,j suggests that these bioelectric and biohydraulic
contributions are small compared to the other effects. A further
discussion of these contributions requires precise estimates of
the bioelectric and biohydraulic couplings that could be obtained
from experiments on spheroids in the presence of a drain.

In Eq. 13, we have used the definitions (27)

λ̂=
λeff η̄K2

|Peff
2 |

, δ2 =
Peff

2

|Peff
2 |

, v̂2 =
veff

2

K2|Peff
2 |

,

veff
2 = 3v2−

2(γapp
2 + γapp

0 )

η̄
.

[18]

Here, λeff is an effective pumping coefficient and γapp
0,2 are appar-

ent tensions defined in Appendix B. The apparent surface tension
γapp

2 is a modification of the tissue surface tension γ2 stemming
from the flexoelectric term proportional to Λ3. This flexoelec-
tric contribution plays a crucial role in lumen nucleation (27).
In the dynamics of the outer radius of the spheroid, its effect is,
however, minor. Finally, the effective pumping λeff combines the
active pumping λ1 and an electric contribution Λ1λ2/Λ2 due to
electroosmosis. The parameters introduced above are summa-
rized for convenience in Table 2, and their corresponding values
can be computed using Table 1.

Control of the Spheroid Dynamics. We use Eq. 13 to discuss how
external currents and flows can be used to control the growth
and shrinkage of a spheroid. Note that whether the spheroid
grows (dr2/dt > 0) or shrinks (dr2/dt < 0) depends only on the
numerator of Eq. 13.

Fig. 4 shows phase-space trajectories of the outer radius r2

for spheroids that are able to grow in the absence of a drain.
Fig. 4A displays the case without external flow or current. The
following scenarios are possible: The spheroid may be growing
with an unstable fixed point at r2 = 0 (green curve); alternatively,
there might be an additional stable fixed point corresponding to
a steady state, either with finite radius r∗2 6=0 (blue curve) or
with vanishing radius r∗2 (orange curve). Imposing an external
flow implies nonzero values of w0 and w1, which are negative
in the case where fluid flows out of the lumen (depicted in Fig.
1B). The case of a nonvanishing value of w0 is displayed in
Fig. 4B: In this case, the trajectories are shifted downward by
an amount w0. In this case, even the growing spheroid (green
curve) has a critical radius below which it shrinks (open green
circle). The stable steady state (blue curve) has moved to r∗2 = 0.
Fig. 4C shows the effect of a nonvanishing value of w1: The
slope of the phase-space trajectories is modified. Note that this

Table 2. Summary of the effective parameters introduced in the text, their definition, and the corresponding equation in the text

Parameter Definition Equation Description

κeff κ− κ̄λ2/Λ2 Below Eq. 10 Effective permeation coefficient

Peff
1,2 Πext

1,2 − Pc
h−

Jp,1,2
K1,2
− 2

3

(
ζ0ν0 +λ3 +

Λ3λ2+(3ν1/2−2ν0ν3)Λ1
Λ2

)
Eq. 25a Effective pressure

γ
app
1,2 γ1,2∓ 4ν3Λ3/Λ2 Eq. 25b Apparent surface tension
γ

app
0

(
3ν1/2− 2(2 + ν0)ν3

)
(Λ3/Λ2) Eq. 25b Apparent surface tension

λeff λ1−Λ1λ2/Λ2 Eq. 25c Effective pumping coefficient
R0 K2η̄ Eq. 12 Characteristic length
τ0 η̄/|Peff

2 | Eq. 12 Characteristic time
Q0 4πη̄2K3

2 |P
eff
2 | Eq. 12 Characteristic volumetric flux

I0 4πΛ2η̄K2|Peff
2 |/|λ2| Eq. 12 Characteristic electric current

δ1,2 Peff
1,2/|P

eff
2 | Eq. 18 Dimensionless effective pressure

λ̂ λeffη̄K2/|Peff
2 | Eq. 18 Dimensionless effective pumping

v̂2
(
3v2− (2(γapp

2 + γ
app
0 ))/η̄

)
/(K2|Peff

2 |) Eq. 18 Dimensionless effective velocity
Q̂ Qext/Q0 Below Eq. 13 Dimensionless volumetric flow
Î Iext/I0 Below Eq. 13 Dimensionless electric current
w0,1 j0,1 Î + u0,1Q̂ Below Eq. 13 Dimensionless external contributions

u0 1− K2
1−φ

(
3ν2− 4ν0ν4 + κ̄

Λ2
(3ν1− 4ν0ν3)

)
Eqs. 14 and 15 —

u1 κeffη̄K2
2/(1−φ) Eq. 14 —

j0 (3ν1− 4ν0ν3)/(λ2η̄K2) Eqs. 16 and 17 —
j1 1 Eq. 16 —
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A B C

Fig. 4. Phase portraits (dr2/dt̂, r2) of a spheroid as given by Eq. 13. (A) Example of phase portraits of spheroids that can grow in the absence of a drain.
(B) Example of the effect of a negative value of the parameter w0 on the phase portraits. (C) Example of a negative value of the parameter w1 on
the phase portraits. Parameters (in the order green, blue, orange): v̂2 = {0.5, 0.45,−0.05}, δ2 = {−1, 1, 1}, and λ̂= {2, 1.92, 2.36}. Drain parameters: (A)
w0 = w1 = 0, (B) w0 =−0.2, w1 = 0, and (C) w0 = 0, w1 =−0.1. Note that we have considered only the numerator of Eq. 13 to draw these phase portraits
as the denominator is always positive.

perturbation favors shrinking of the spheroid: The unstable crit-
ical radius below which the spheroid shrinks (open circles along
the x axis) is shifted to larger values compared to the case
without external perturbation shown in Fig. 4A.

We can estimate the critical volumetric flow Qc needed to
change a growing spheroid of size R2 to a shrinking one. From
Eq. 13, we obtain

Qc =−4πK2R2(η̄veff
2 −Peff

2 R2 +λeffR2
2/4)

1 +R2κeffK2/2(1−φ)−βu
, [19]

where the minus sign indicates that Qext < 0 is required to
induce shrinkage (corresponding to flow out of the drain; Fig.
1B). We obtain a similar expression for the critical electric
current that is required to induce shrinkage:

Ic =
4πR2(η̄veff

2 −Peff
2 R2 +λeffR2

2/4)

−R2λ2/(2Λ2) + η̄K2βj
. [20]

Note that λ2 < 0 and therefore Ic is positive (corresponding to
an electric current into the drain; Fig. 1A). One can therefore
always find a value of the externally applied flow or current to
turn a growing spheroid into a shrinking one.

State Diagrams of Hydraulic Control of Spheroid Growth. We con-
clude this section by presenting state diagrams for a spheroid
of initial size R2(t = 0) =R0

2 to which a steady external flow
Qext is imposed (Fig. 5). We consider a spheroid with a drain
inserted to the center but without lumen. This corresponds to
choosing R1 equal to the outer radius of the drain. For sim-
plicity, we fix R1 = 2Rd, where Rd is the inner drain radius. We
again consider spheroids that can grow in the absence of a drain.

Fig. 5A displays the state diagram for the case where the unper-
turbed spheroid is growing at all radii (corresponding to the
green curve in Fig. 4A). Fig. 5B shows the state diagram for a
spheroid which is growing above a critical radius (corresponding
to the yellow curve in Fig. 4A). Fig. 5C is the state diagram for
spheroids that, in the absence of a drain, either reach a steady-
state radius or grow without bounds (corresponding to the blue
curve in Fig. 4A).

Three different regions exist in the diagrams shown in Fig.
5: 1) a growth region (green), where the imposed flow is not
sufficient to arrest growth; note that for increasing values of
Qext, growth slows within this region; 2) a steady-state region
(in orange), in which the spheroid reaches a finite size; within
this region a larger imposed flow drives the spheroid to smaller
steady-state sizes; and 3) a suppression region (in blue) where the
spheroid shrinks until it is suppressed. We define that a spheroid
has been suppressed when its size becomes smaller than a cut-
off size R2 =R1 + hc, with hc = 10 µm a typical cell thickness. In
the region of spheroid suppression, the time ts that it takes for
the spheroid to be suppressed is indicated by shades of blue. For
fixed initial spheroid size, the time for suppression decreases as
the magnitude of the imposed flow increases.

The solid black lines in Fig. 5 indicate boundaries between
the different regions. Note that the line separating the steady-
state region and the suppression region depends on the cutoff
hc. The dashed white line indicates the nullcline dr2/dt̂ = 0 and
gives the critical value of the external flow Qc required to switch
from a growing to a shrinking spheroid (given by Eq. 19 for
R1 = 0). Note that below the nullcline the spheroids grow and
above the nullcline they shrink. Note that a similar analysis can
be performed in the case of an external current I ext. In this
case the same behaviors are found: growth, suppression, and

A B C

Fig. 5. State diagrams of the long-time growth behavior of the spheroid as a function of its initial radius R2(t = 0) = R0
2 and of the imposed volumetric flux

Qext. The state diagrams correspond to a spheroid which, in the absence of the external flow and for vanishing lumen, is growing for all radii (A), is growing
above a critical radius (B), reaches a steady-state radius or grows without bound (C). Shades of blue indicate the time for suppression ts (main text). Note
that all parameters are made dimensionless using the normalization given in Eq. 12. These plots are obtained by solving the dynamics equation Eq. 23b with
the parameter values given in Table 3 and with a fixed value of R1 = 2Rd.
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steady-state regions which depend on the initial spheroid size
and on the magnitude of the imposed electric current.

Conclusion
Using a coarse-grained description of a tissue as an active mate-
rial capable of exerting mechanical stresses, transporting ions,
and pumping fluid, we have proposed a technique to perturb
tissues electrically and hydraulically. This technique relies on
an imposed fluid flow or electric current source using a micro-
metric drain or electrode which can turn a growing spheroid to
shrinkage.

Our theory allows us to estimate orders of magnitude of the
external flow and current that are required to suppress an ini-
tially growing spheroid. For small spheroids with radius of about
100 µm, we show for instance that an electric current of a few
nanoamperes or a volumetric flow of about 103 µm3/s could have
a significant impact on the spheroid state (Fig. 6 in Appendix
E). It means that even a passive drain connecting the inner part
of the spheroid to the surrounding medium could already alter
growth of small spheroids. For larger aggregates, connecting the
drain to a pump leads to spheroid suppression for any size, pro-
vided that the imposed external flow is sufficiently strong and
maintained long enough (for instance, for spheroids of a few
millimeters in radius an electric current of tens to hundreds of
nanoamperes or a volumetric flow of about 104 to 105 µm3/s
could be sufficient; Fig. 6). Spheroid suppression can be obtained
also by imposing an electric current, and both fluid flow and
electric current application could be combined to accelerate the
process.

Our approach has also allowed us to characterize the differ-
ent long-time states of a growing spheroid subject to an external
perturbation. Depending on the magnitude of the hydraulic or
electrical field, we have shown that the growth can be either
slowed down or arrested (Fig. 5). In the latter case, the arrest
of growth can lead to a steady state or even to the shrinking and
eventually the suppression of the spheroid. If the magnitude of
the external field is above a threshold value, the suppression of
the spheroid is always achieved, and stronger magnitudes then
accelerate the process. Our coarse-grained description is generic,
as it depends on effective tissue parameters but is insensitive to
many details. Our approach does not distinguish between a sup-
pressed state where all cells have disappeared and a state where a
few cells still remain. This distinction depends on cellular details
that we are not considering here.

We have also shown how different protocols can be used to
obtain this suppression: For instance, a longer perturbation at
a weaker magnitude is slower but as efficient as a shorter but
stronger one; decreasing the magnitude of the flow or electric
current as the size of the spheroid decreases can also be used to
suppress a spheroid (see Fig. 2 for examples). Interestingly, pro-
tocols that could lead to spheroid suppression need to be carried
out over a sufficiently long time period. We estimate that the
slow, steady flow or electric current that mediates the progres-
sive suppression of a spheroid has to be maintained over days or

A B

Fig. 6. Orders of magnitude of the external fields required to observe a
significant change in the spheroid dynamics as a function of their size as
given by Eqs. 10 and 11. (A) Volumetric flow Qext. (B) Electric current Iext.

weeks. This is in contrast with typical cancer ablation techniques
(35), for which treatments are brief and intense. Radiofrequency
ablation for instance requires the application of an alternating
current with high frequency (up to 500 kHz) and high voltage (up
to several kilovolts) to heat the tissue (46). Similarly, irreversible
electroporation ablations use microsecond pulses of high electric
potential (up to 3 kV) (33).

At the time scales considered in this article, the case of a
tumor is more complex than that of a spheroid. First, one has
to compare the effect of the flux on the tumor with that on the
surrounding healthy tissue. This question will be addressed in
future work. Second, we have not explicitly considered the role
of nutrient and oxygen transport. The larger division rate at the
surface that we consider (Eq. 9) could be related for example
to the oxygen gradient that has been observed experimentally
(47). Furthermore, nutrient transport has been shown to influ-
ence growth in other contexts (48). Moreover, the geometry of
spheroids could be more complex than a simple sphere, and a
natural expansion of this current work will be the study of the
stability of the spherical shape during the growth or shrinkage
processes (49). Last, during the suppression process, the escape
of metastatic cells should be prevented. The signs of stresses that
we find here correspond to flows toward the sphere center. This
suggests that escape of material might be hampered by imposed
flows or currents, thereby providing a barrier against the escape
of cells.

Our work is based on generic mechanical, hydraulic, and
electrical properties of tissues. It thus paves the way for exper-
imental methods to control spheroid size. If applied to cancer-
ous tissues, it could provide a means to influence cancerous
tumor growth, arrest their proliferation, and even suppress these
tumors. Indeed, the hydraulic and electrical perturbations we
have proposed here do not rely on identifying and hindering spe-
cific chemical pathways that are characteristic of cancerous tissue
(50), but rather on general, physical responses to an external
field.

Appendix A. Constitutive Equations for Permeation and for
the Electric Current Density
Based on the symmetry of the system and assuming linear
response, the constitutive equation for the internal force density
reads

fα=−κ̃(vc
α−v f

α)− κ̃′qαβ(vc
β−v f

β) + λ̃1pα + λ̃′1qαβpβ

+ λ̃2Eα+ λ̃′2qαβEβ+ λ̃3pα∂βpβ+ λ̃′3pβ∂βpα.
[21]

Note that the term pα∂βpα = ∂β(pαpα)/2 vanishes as the polar-
ity is a unit vector. Moreover, in the main text we consider
a system with spherical symmetry and the polarity is assumed
to be radial p = er , such that the nematic order parameter
qαβ = pαpβ − (1/3)δαβ is diagonal in spherical coordinates with
qrr = 2/3, qθθ =−1/3, qϕϕ =−1/3. As a consequence, and since
pβ∂βpα = 0 for p = er , we obtain Eq. 3 in the main text with
κ= κ̃+ 2κ̃′/3, λ1 = λ̃1 + 2λ̃′1/3, λ2 = λ̃2 + 2λ̃′2/3, and λ3 = λ̃3.

Similarly, the general form for the electric current density
constitutive equation reads

jα=−k(vc
α−v f

α)− k ′qαβ(vc
β−v f

β) + Λ̃1pα + Λ̃′1qαβpβ

+ Λ̃2Eα+ Λ̃′2qαβEβ+ Λ̃3pα∂βpβ+ Λ̃′3pβ∂βpα
[22]

and it yields Eq. 4 in the main text with κ̄= k + 2k ′/3, Λ1 = Λ̃1 +

2Λ̃′1/3, Λ2 = Λ̃2 + 2Λ̃′2/3, and Λ3 = Λ̃3 for a system with spher-
ical symmetry and with p = er . For a system without spherical
symmetry or with p 6=er , Eqs. 21 and 22 must be used.

8 of 12 | PNAS
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Appendix B. Dynamics of a Spheroid in the Presence of a
Drain
The dynamical equations for the spheroid and lumen radii are
obtained by first considering force balance Eq. 1 in spherical
coordinates with boundary conditions Eq. 9. This yields the
velocity profiles of cells and interstitial fluid. A differential equa-
tion for the radii dynamics R1,2(t) is then obtained from the
normal stress balance Eq. 7 together with the permeation condi-
tions at the boundary given by Eq. 8. Details on this computation
in the case without a drain can be found in ref. 27. Including the
external fields due to the presence of the drain, we obtain the
following coupled differential equations for the dynamics of the
radii r1 and r2 of the lumen and of the spheroid:

χ
dr1

dt̂
+

3(V̂1 + dr1/dt̂)r
2
1

r3
2 − r3

1

+
3(V̂2− dr2/dt̂)r

2
2

r3
2 − r3

1

= δ1

− 2

r1

(
γ̂1− γ̂0

r1(r1 + r2)

r2
1 + r2

2 + r1r2

)
+ (u1Q̂ + Î )

1

r1

(r2− r1)(r1 + 2r2)

2(r2
1 + r2

2 + r1r2)

+
1

r2
1

(
χQ̂ + u2Q̂ + j2Î − (u3Q̂ + j3Î )

(r2− r1)(2r1 + r2)

r2
1 + r2

2 + r1r2

)
+ λ̂(r2− r1)

r2
1 + 2r1r2 + 3r2

2

4(r2
1 + r2

2 + r1r2)
,

[23a]

− dr2

dt̂
+

3(V̂1 + dr1/dt̂)r
2
1

r3
2 − r3

1

+
3(V̂2−dr2/dt̂)r

2
2

r3
2 − r3

1

= δ2

+
2

r2

(
γ̂2 + γ̂0

r2(r1 + r2)

r2
1 + r2

2 + r1r2

)
− (u1Q̂ + Î )

1

r2

(r2− r1)(2r1 + r2)

2(r2
1 + r2

2 + r1r2)

+
1

r2
2

(
−Q̂ + u2Q̂ + j2Î + (u3Q̂ + j3Î )

(r2− r1)(r1 + 2r2)

r2
1 + r2

2 + r1r2

)
− λ̂(r2− r1)

3r2
1 + 2r1r2 + r2

2

4(r2
1 + r2

2 + r1r2)
,

[23b]

where we have introduced dimensionless radii ri(t̂) =Ri(t)/R0

with R0 =K2η̄ and a dimensionless time t̂ = t/τ0 with τ0 =
η̄/|Peff

2 |. We have also introduced the dimensionless parameters

γ̂0,1,2=
γapp

0,1,2

η̄K2|Peff
2 |

, V̂1,2 =
v1,2

K2|Peff
2 |

, δ1,2=
Peff

1,2

|Peff
2 |

λ̂=
λeff η̄K2

|Peff
2 |

, χ=
K2

K1
,

[24]

where the effective parameters are defined as

Peff
1,2 = Πext

1,2 −Pc
h −

Jp,1,2

K1,2

− 2

3

(
ζ0ν0 +λ3 +

Λ3λ2 + (3ν1/2− 2ν0ν3)Λ1

Λ2

)
,

[25a]

γapp
1,2 = γ1,2∓ 4ν3Λ3/Λ2,

γapp
0 = (3ν1/2− 2(2 + ν0)ν3)(Λ3/Λ2), [25b]

λeff =λ1−Λ1λ2/Λ2. [25c]

In addition to these terms, the presence of external flows
and currents gives new dimensionless contributions which are
defined as

Q̂ =
Qext

4πη̄2K 3
2 |Peff

2 |
, Î =

I ext|λ2|
4πΛ2η̄K2|Peff

2 |
, u1=

κeff η̄K 2
2

1−φ ,

[26a]

u2=
K2

1−φ

(
ν2− 4(ν0− 1)ν4/3−

κ̄

Λ2
(4(ν0− 1)ν3/3− ν1)

)
,

[26b]

u3=
K2

1−φ

(
ν2− 2(1 + 2ν0)ν4/3−

κ̄

Λ2
(2(1 + 2ν0)ν3/3− ν1)

)
,

[26c]

j2=
4(ν0− 1)ν3/3− ν1

λ2η̄K2
, j3=

2(1 + 2ν0)ν3/3− ν1

λ2η̄K2
, [26d]

where κeff =κ− κ̄λ2/Λ2 is an effective permeation coefficient.
To understand the effect of an external flux and an external

electric current on the spheroid size, we can rewrite Eq. 23b in
the form of an equation for the dynamics of the spheroid volume
V = 4πR3

2/3. To simplify the analysis, we take a vanishing lumen
size (r1 = 0) and we consider only the term that comes from the
externally imposed current and flux. It yields

dV

dt
=Qext +Qext K2κ

effR2

1−φ + I ext K2λ2R2

Λ2
−Qext(u2 + 2u3)

− I ext λ2K2

Λ2
(j2 + 2j3), [27]

where we have reintroduced dimensional quantities to simplify
the following discussion. The first term on the right-hand side
of Eq. 27 is a direct consequence of imposing an external flow:
Since the tissue is incompressible, an imposed flow from the out-
side to the inside of the spheroid (Qext > 0) provokes an increase
in volume, while an imposed flow from the inside of the spheroid
to the outside (Qext < 0) shrinks its size. The second term is a
signature of the finite permeability of the tissue, which acts as
a porous medium, and the effect is therefore proportional to
the ratio of the surface permeability K2 and the bulk perme-
ability (κeffR2/(1−φ))−1. The third term accounts for a similar
phenomenon to the second one but due to the electroosmoti-
cally generated flow due to the imposed current. The two last
terms correspond to bioelectric and biohydraulic contributions:
Indeed, the terms u2,3 and j2,3 involve the parameters νi and
thus stem from the coupling between the electric field (or the
interstitial fluid flow) and the cell polarity that appears in the cell
stress.

In the case of a small lumen compared to the spheroid size, one
can consider the limit R1�R2 to describe the spheroid dynam-
ics. In this limit, we can in particular obtain from Eq. 23b an
equation for the dynamics of r2 only, which is given by Eq. 13
in the main text. The parameters βu,j introduced in the main text
read βu = u2 + 2u3 and βj = j2 + 2j3.

Appendix C. Imposed Pressure and Electric Potential
Difference
The main text describes the spheroid size control when an exter-
nal volumetric flow Qext or an external current I ext is imposed.
Alternatively, a pressure difference or an electric potential dif-
ference can be imposed between the outer part of the drain and
the outer layer of the spheroid, which can be considered as the
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conjugate ensemble. Here we provide the additional equations
required to discuss this situation.

Imposed Pressure Difference. To compute the pressure differ-
ence ∆P =Pd−Pext

2 , we decompose it as ∆P = ∆Pd1 + ∆P12,
where ∆P12 =Pext

1 −Pext
2 is the pressure difference across

the spheroid and ∆Pd1 =Pd−Pext
1 is the pressure difference

between the outer part of the drain and the lumen and reads

∆Pd1 =Qext(Kd +Klum), [28]

where Kd,lum are the hydraulic resistances of the drain and of
the lumen, respectively. The drain hydraulic resistance is given by
Kd = 8ηfLd

πR4
d

, where ηf ' 10 mPa·s is the viscosity of the interstitial
fluid, and Ld,Rd are the width and the radius of the drain.

The pressure difference ∆P12 =Pext
1 −Pext

2 can then be
computed using Eq. 8. In dimensionless form, it reads

∆P̂12 = ∆Π̃ + Q̂

(
χ

r2
1

+
1

r2
2

)
− (χṙ1 + ṙ2)−∆P̂ f , [29]

where we use the short-hand notation ṙ1,2 = dr1,2/dt̂ and we
have defined

∆P̂12 =
Pext

1 −Pext
2

|Peff
2 |

, ∆P̂ f =
P f(r1)−P f(r2)

|Peff
2 |

∆Π̃ =
Π1−Π2− (J1/K1− J2/K2)

|Peff
2 |

.

[30]

The dimensionless quantities Peff
2 , r1,2, χ, and Q̂ have been

introduced in Appendix B. To compute the interstitial pressure
difference ∆P f =P f(R1)−P f(R2), one can use the identity
∆P f =−

∫ R2

R1
dr ∂rP

f(r). Indeed, the gradient of the interstitial
fluid pressure can be obtained using force balance Eq. 1b and the
constitutive equations Eqs. 3 and 4. It reads

∂r̂ P̂
f(r̂) = u1v̂(r̂)− λ̂− 2λ̂3

r̂
− u1Q̂ + Î

r̂2
, [31]

where we have introduced, in addition to the dimensionless
quantities already introduced in Appendix B, the dimensionless
radius r̂ = r/R0, cell velocity v̂ = vc

r /(K2|Peff
2 |), and interstitial

fluid pressure P̂ f =P f/|Peff
2 | and the dimensionless parame-

ter λ̂3 = (λ3−Λ3λ2/Λ2)/|Peff
2 |. The dimensionless cell velocity

appearing in Eq. 31 can be cast into the form

v̂(r̂) =
a

r̂2
+

b

r̂
+ c + dr̂ − λ̂

4
r̂2, [32]

where we have introduced the r̂ -independent factors

a =
r2
1 r

2
2

r2
12

(r1(ṽ2− ṙ2) + r2(ṽ1 + ṙ1))− λ̂r3
1 r

3
2

4r2
12

+
Q̂r1r2

r2
12

(
u3(r1 + r2)− u1r1r2

2

)
+

Î r1r2

r2
12

(
j3(r1 + r2)− r1r2

2

)
,

[33a]

b =−u3Q̂ − j3Î , c =
u1Q̂

2
+

Î

2
− 2γ̂0

3
, [33b]

d =
λ̂

4

(
r2 +

r3
1

r2
12

)
− (ṽ1 + ṙ1)r2

1 + (ṽ2− ṙ2)r2
2

r3
2 − r3

1

+
Q̂

r2
12

(
u3−

u1(r1 + r2)

2

)
+

Î

r2
12

(
j3−

r1 + r2

2

)
,

[33c]

and the dimensionless quantities (in addition to those already
introduced in Appendix B)

r2
12 = r2

1 + r2
2 + r1r2 , ṽ1,2 = V̂1,2∓ 2γ̂0/3. [34]

The dimensionless pressure difference Eq. 29 can therefore
be computed in terms of the dimensionless parameters of the
model, although its expression is lengthy. One can, however,
expand this expression in the limit of a thin spheroid (i.e., R1∼
R2), yielding the expression

∆P̂12 =
1

|Peff
2 |

2(γ1 + γ2)

R2
+ (r2− r1)A+O

(
(r2− r1)2), [35]

where the first term on the right-hand side is the Laplace contri-
bution in the limit R1→R2 and the dimensionless coefficient A
represents the first correction in terms of the thickness R2−R1

and reads

A=
u1

(
V̂2−χV̂1−∆Π̃

)
1 +χ

+
2

r2

(
u1(γ̂1 + γ̂2)

1 +χ
+ λ̂3

)
+

2γ̂1

r2
2

+
Q̂

r2
2

(
2(u2− u3)

r2
− u1

)
+

2Î (j3− j2)

r3
2

.

[36]

Imposed Electric Potential Difference. Similar to the pressure, one
can compute the electric potential difference ∆U =U d−U ext

2

by decomposing it as ∆U = ∆Ud1 + ∆U12 with ∆U12 =U ext
1 −

U ext
2 the electric potential difference across the spheroid and

with ∆Ud1 =U d−U ext
1 the electric potential difference across

the drain. This difference reads

∆Ud1 = I ext(1/Gd + 1/Glum), [37]

where Gd,lum are the electrical conductances of the drain and of
the lumen. The electrical conductance of the drain is computed
as 1/Gd = ρfLd

πR2
d

, where ρf ' 1 Ω·m is the resistivity of the inter-

stitial fluid (taken to be that of salted water, whose conductivity
is about G ' 1 S/m).

The electric potential difference across the spheroid ∆U12 can
then be computed in the following way. From Eq. 4, an expres-
sion for the electric field can be obtained, which can then be used
to compute the electric potential difference using the identity
∆U12 =

∫ R2

R1
dr E(r). Defining the dimensionless electric field

Ê =Er η̄K2λ2/|Peff
2 |, we have

Ê(r̂) =−Λ̂1− ū1v̂(r̂)− 2Λ̂3

r̂
− ū1Q̂ − Î

r̂2
, [38]

where we have defined the dimensionless parameters

ū1 =
η̄K 2

2 κ̄λ2

(1−φ)Λ2
, Λ̂1 =

η̄K2λ2Λ1

Λ2|Peff
2 |

, Λ̂3 =
λ2Λ3

Λ2|Peff
2 |

, [39]

and where the expression for the dimensionless cell velocity v̂ is
displayed in Eq. 32.

Appendix D. Numerical Solution to the Dynamics Equations
Figs. 2 and 3 of the main text have been obtained by solving
the coupled equations Eqs. 23a and 23b using the dimensionless
parameters given in Table 3. The presence of the drain provides
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Table 3. Dimensionless parameter values used for plotting the figures

Parameter values

Figure δ1 δ2 χ γ̂0 γ̂1 γ̂2 λ̂ V̂1 V̂2 u1 u2 u3 j2 j3
Fig. 2 0.1 −1 1 0 −0.05 0.15 0 1 0.1 102 0 0 0 0
Fig. 3 0.3 −1 1 0 0.15 0.15 0.2 0.1 0.5 102 0 0 0 0
Fig. 5A — −1 1 0 — 0.15 0.5 — 0.3 102 0 0 0 0
Fig. 5B — 1 1 −0.15 — 0.15 5.5 — 0 102 0 0 0 0
Fig. 5C — 1 1 0 — 0.15 4 — 0.15 102 0 0 0 0

These parameters are defined in Eqs. 24–26 in Appendix B.

a natural cutoff for the (dimensionless) lumen radius r1: If at
a time t0 the inner radius R1(t) reaches the size of the outer
drain radius, which we assume to be equal to 2Rd = 10 µm, we
fix its (dimensionless) value to be r1(t > t0) = 2Rd/R0 and solve
only Eq. 23b with this fixed value for r1. If the external flow is
stopped at a subsequent time t1 > t0 (see Fig. 2F of the main text
for instance), we restart solving simultaneously Eqs. 23a and 23b,
taking r1(t1) = 2Rd/R0 as the initial condition.

Fig. 5 of the main text has been obtained by taking r1 =
2Rd/R0 and solving numerically Eq. 23b using the dimensionless
parameters given in Table 3, with the initial condition R2(t =
0) =R0

2 and a given imposed external flux Qext. If a spheroid
reaches a cutoff size R2 = 2Rd + hc after a time t = ts, it is clas-
sified as “suppressed” and its suppression time ts is used to
produce the color coding.

Appendix E. Estimates for Parameter Values
Estimation of the phenomenological parameters appearing in
the continuum model is crucial for our analysis. Some of these
parameters, such as the cell shear and bulk viscosities, the tis-
sue surface tension, and the bulk permeability for instance, have
already been estimated in experiments. For most of the remain-
ing parameters, experimental values are not yet available and
we have used order-of-magnitude estimations (see refs. 26 and
27 for details). We provide parameter values and references for
these values in Table 1.

Data Availability. There are no data underlying this work.
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